On an empty triangle with the maximum area in planar point sets
نویسنده
چکیده
We deal with only finite point sets P in the plane in general position. A point set is convex or in convex position if it determines a convex polygon. A convex subset Q of P is said to be empty if no point of P lies inside the convex hull of Q. An empty convex subset of P with k elements is also called a k-hole of P . Let P be an n planar point set in general position. For a subset Q of P , denote the area of the convex hull of Q by A(Q). In [3], we considered the ratio between the maximum area of 3-holes (empty triangles) T of P and the whole area A(P ). Namely, let
منابع مشابه
On a Triangle with the Maximum Area in a Planar Point Set
For a planar point set P in general position, we study the ratio between the maximum area of an empty triangle with vertices in P and the area of the convex hull of P .
متن کاملHoles or Empty Pseudo-Triangles in Planar Point Sets
Let E(k, l) denote the smallest integer such that any set of at least E(k, l) points in the plane, no three on a line, contains either an empty convex polygon with k vertices or an empty pseudo-triangle with l vertices. The existence of E(k, l) for positive integers k, l ≥ 3, is the consequence of a result proved by Valtr [Discrete and Computational Geometry, Vol. 37, 565–576, 2007]. In this pa...
متن کاملOn edge-disjoint empty triangles of point sets
Let P be a set of points in the plane in general position. Any three points x, y, x 2 P determine a triangle (x, y, z) of the plane. We say that (x, y, z) is empty if its interior contains no element of P . In this paper we study the following problems: What is the size of the largest family of edge-disjoint triangles of a point set? How many triangulations of P are needed to cover all the empt...
متن کاملA convex combinatorial property of compact sets in the plane and its roots in lattice theory
K. Adaricheva and M. Bolat have recently proved that if $,mathcal U_0$ and $,mathcal U_1$ are circles in a triangle with vertices $A_0,A_1,A_2$, then there exist $jin {0,1,2}$ and $kin{0,1}$ such that $,mathcal U_{1-k}$ is included in the convex hull of $,mathcal U_kcup({A_0,A_1, A_2}setminus{A_j})$. One could say disks instead of circles.Here we prove the existence of such a $j$ and $k$ ...
متن کاملOn the Number of Empty Pseudo-Triangles in Point Sets
We analyze the minimum and maximum number of empty pseudo-triangles defined by any planar point set. We consider the cases where the three convex vertices are fixed and where they are not fixed. Furthermore, the pseudo-triangles must either be star-shaped or can be arbitrary.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 311 شماره
صفحات -
تاریخ انتشار 2011