On an empty triangle with the maximum area in planar point sets

نویسنده

  • Kiyoshi Hosono
چکیده

We deal with only finite point sets P in the plane in general position. A point set is convex or in convex position if it determines a convex polygon. A convex subset Q of P is said to be empty if no point of P lies inside the convex hull of Q. An empty convex subset of P with k elements is also called a k-hole of P . Let P be an n planar point set in general position. For a subset Q of P , denote the area of the convex hull of Q by A(Q). In [3], we considered the ratio between the maximum area of 3-holes (empty triangles) T of P and the whole area A(P ). Namely, let

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Triangle with the Maximum Area in a Planar Point Set

For a planar point set P in general position, we study the ratio between the maximum area of an empty triangle with vertices in P and the area of the convex hull of P .

متن کامل

Holes or Empty Pseudo-Triangles in Planar Point Sets

Let E(k, l) denote the smallest integer such that any set of at least E(k, l) points in the plane, no three on a line, contains either an empty convex polygon with k vertices or an empty pseudo-triangle with l vertices. The existence of E(k, l) for positive integers k, l ≥ 3, is the consequence of a result proved by Valtr [Discrete and Computational Geometry, Vol. 37, 565–576, 2007]. In this pa...

متن کامل

On edge-disjoint empty triangles of point sets

Let P be a set of points in the plane in general position. Any three points x, y, x 2 P determine a triangle (x, y, z) of the plane. We say that (x, y, z) is empty if its interior contains no element of P . In this paper we study the following problems: What is the size of the largest family of edge-disjoint triangles of a point set? How many triangulations of P are needed to cover all the empt...

متن کامل

A convex combinatorial property of compact sets in the plane and its roots in lattice theory

K. Adaricheva and M. Bolat have recently proved that if $,mathcal U_0$ and $,mathcal U_1$ are circles in a triangle with vertices $A_0,A_1,A_2$, then there exist $jin {0,1,2}$ and $kin{0,1}$ such that $,mathcal U_{1-k}$ is included in the convex hull of $,mathcal U_kcup({A_0,A_1, A_2}setminus{A_j})$. One could say disks instead of circles.Here we prove the existence of such a $j$ and $k$ ...

متن کامل

On the Number of Empty Pseudo-Triangles in Point Sets

We analyze the minimum and maximum number of empty pseudo-triangles defined by any planar point set. We consider the cases where the three convex vertices are fixed and where they are not fixed. Furthermore, the pseudo-triangles must either be star-shaped or can be arbitrary.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 311  شماره 

صفحات  -

تاریخ انتشار 2011